

Form:	Form Number	EXC-01-02-02A
	James Number and Date	2/3/24/2022/2963
Course Syllabus	Issue Number and Date	05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1.	Course Title	Atomic and Molecular physics -2
2.	Course Number	0302962
3.	Credit Hours (Theory, Practical)	3/ Theory
5.	Contact Hours (Theory, Practical)	3/ Theory
4.	Prerequisites/ Corequisites	Atomic and Molecular physics -1
5.	Program Title	Phd in Physics
6.	Program Code	03
7.	School/ Center	Faculty of Science
8.	Department	Physics
9.	Course Level	Phd
10.	Year of Study and Semester (s)	
11.	Other Department(s) Involved in	-
11.	Teaching the Course	
12.	Main Learning Language	English
13.	Looming Types	<u>□</u>Face to face learning □ Blended □ Fully
15.	Learning Types	online
14.	Online Platforms(s)	□Moodle □Microsoft Teams
15.	Issuing Date	1 Jan 2012
16.	Revision Date	11 January 2025

17. Course Coordinator:

Name:	Contact hours:
Office number:	Phone number:
Email:	

18. Other Instructors:

19. Course Description:

The course is intended for the PhD in physics student's and aims to familiarize them with basic concepts in Molecular Spectroscopy – Born-Oppenheimer approximation – Rotational spectrum of diatomic molecule – rigid rotor model – Selection rules – intensities – effect of isotropic substitution – non-rigid rotor; polyatomic molecules; vibrational spectrum of diatomic molecule; anharmonic effects; vibration – rotation spectrum – breakdown of Born-Oppenheimer approximation; electronic spectrum – intensity of vibrational – electronic spectrum; Franck-Condon principle – rotational fine structure; Raman effect – Stokes and anti-Stokes lines – application

- **20. Program Intended Learning Outcomes:** (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)
 - 1. SO1: to be able to demonstrate an advanced and comprehensive understanding of core physics concepts and specialized knowledge in a chosen field of research, contributing to the frontier of physics.
 - 2. SO2: to be able to develop and execute independent, original research projects that address complex scientific problems, advancing theoretical and experimental physics.
 - **3.** SO3: to be able to apply advanced mathematical and computational techniques to analyze complex physical phenomena and critically evaluate scientific literature and experimental results.
 - 4. SO4: to be able to effectively communicate complex physics concepts, research findings, and their significance through academic writing, presentations, and public outreach.
 - 5. SO5: to be able to adhere to high ethical standards and professional responsibility in conducting research, including data integrity, ethical treatment of subjects, and the responsible use of resources.
 - 6. SO6: to be able to demonstrate leadership and collaborative skills within multidisciplinary teams, contributing to the development of new scientific knowledge and promoting knowledge-sharing across disciplines.
 - 7. SO7: to be able to cultivate the ability to adapt to new scientific advancements and continuously engage in professional development to contribute to innovation in the field of physics.

SO8: to be able to master experimental and computational techniques relevant to the research field, demonstrating competency in operating and developing specialized physics instrumentation and software.

- **21. Course Intended Learning Outcomes:** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)
 - 1. Introduction to electronic spectroscopy of diatomic molecules.
 - 2. Study of vibrational course structure of electronic spectra of diatomic molecules; analysis of vibrational spectra of diatomic molecules and estimation of vibrational constants, moment of inertia, force constant, etc.
 - 3. To understand the electronic structure, course, and fine structure of energies of electronic states of diatomic molecules.
 - 4. To understand the vibrational, rotational motions, and coupling of these motions by evaluating the vibrational and rotational constants of the electronic states.
 - 5. To understand various coupling schemes.
 - 6. Determination of term manifold of homonuclear and heteronuclear diatomic molecules.
 - 7. To understand the symmetry properties of the electronic wavefunctions, the selection rules, and allowed electronic transitions.
 - 8. To understand the basic physics of Raman scattering of diatomic/polyatomic molecules; experimental techniques of Raman spectroscopy; analysis of Raman spectra for investigating molecular structure.

Course	The learning levels to be achieved									
ILOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating				
1		X								
2	Х	X	X							
3		X								
4	X	X								
5		X								
6	Х		X							
7	Х	X	X							
8	X	X	X							

27. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

D /								$\mathbf{H} \mathbf{O} \left(0 \right)$
Program /	ILO (1)	ILO (2)	ILO (3)	ILO (4)	ILO (5)	ILO (6)	ILO (7)	ILO (8)
SOs /								
Course								
ILOs								
(
1	Х							
2	Х							
<i>L</i>	Λ							
3	Х							
4	Х							
5								
5	Х							
6	Х							
7	х							
8	Х							

2[°]. Topic Outline and Schedule:

Week	Lecture	Topic	ILO/s Linked to the Topic	Learning Types (<u>Face to Face</u> / Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
1	1	General nature of molecular structure	Underst anding basic concepts of molecul ar structure	Face to Face	Classr oom	Synchron ous	Assign ments, Particip ation	Bransde n & Joachain (Pearson), Chapter 9.1

The University of Jordan

الجامعة الاردنية

	2	Born-Oppenheimer separation	Graspin g electroni c and nuclear wavefun ction separati on	Face to Face	Classr oom	Synchron ous	Assign ments	Bransde n & Joachain (Pearson), Chapter 9.2
2	3	Rotation and vibration of diatomic molecules	Analyzi ng rotation al and vibratio nal energy levels	Face to Face	Classr oom	Synchron ous	Quiz, Assign ments	Bransde n & Joachain (Pearson), Chapter 9.3
	4	Electronic structure of diatomic molecules	Examini ng electroni c states and transitio ns	Face to Face	Classr oom	Synchron ous	Assign ments	Bransde n & Joachain (Pearson), Chapter 9.4
3	5	Structure of polyatomic molecules	Explorin g molecul ar geometr y and interacti ons	Blende d	Online Platfor m	Asynchro nous	Assign ments, Online Discussi on	Bransde n & Joachain (Pearson), Chapter 9.5
	6	Rotational energy levels of diatomic molecules	Underst anding rotation al spectra	Face to Face	Classr oom	Synchron ous	Assign ments	Bransde n & Joachain (Pearson), Chapter 10.1
4	7	Vibrational-rotational spectra of diatomic molecules	Explaini ng vibratio nal- rotation	Blende d	Online Platfor m	Synchron ous/Asyn chronous	Quiz	Bransde n & Joachain (Pearson), Chapter 10.2

The University of Jordan

الجامعة الاردنية

			al coupling					
	8	Electronic spectra of diatomic molecules	Evaluati ng electroni c transitio ns	Face to Face	Classr oom	Synchron ous	Assign ments	Bransde n & Joachain (Pearson), Chapter 10.3
5	9	Electronic spin and Hund's cases	Underst anding spin and coupling phenom ena	Blende d	Online Platfor m	Asynchro nous	Quiz	Bransde n & Joachain (Pearson), Chapter 10.4
	10	The nuclear spin	Analyzi ng the role of nuclear spin in spectra	Face to Face	Classr oom	Synchron ous	Assign ments	Bransde n & Joachain (Pearson), Chapter 10.5
6	11	Inversion spectrum of ammonia	Underst anding inversio n spectra	Blende d	Online Platfor m	Asynchro nous	Quiz, Online Discussi ons	Bransde n & Joachain (Pearson), Chapter 10.6
	12	Problems and applications of molecular spectra	Solving related problem s and understa nding applicati ons	Face to Face	Classr oom	Synchron ous	Problem -solving Assign ments	Bransde n & Joachain (Pearson), Chapter s 9 & 10
7	13	Revision and Q&A	Clarifyi ng doubts and revising content	Face to Face	Classr oom	Synchron ous	Particip ation, Peer Discussi ons	Bransde n & Joachain (Pearson), Chapter s 9 & 10

24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	ILO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm Exam	30%	End of tissues			
Report and Presentation	30%	Various ideas			
Final Exam	40%	All topics			

2°. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

No special requirements.

27. Course Policies:

A- Attendance policies:

Students are expected to attend all classes.

- B- Absences from exams and submitting assignments on time:
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior:

E- Grading policy:

Mid exam (30 %), Report and Presentation (20 %), final (50 %)

F- Available university services that support achievement in the course:

2^V. **References**:

A- Required book(s), assigned reading and audio-visuals:

- 1. Physics of Atoms and Molecules, Bransden & Joachain (Pearson)
- 2. Fundamentals of Molecular Spectroscopy, C. N. Banwell (Tata McGraw-Hill

B- Recommended books, materials, and media:

- **Spectra of Diatomic Molecules** by G. Herzberg, Krieger Malbar Florida, 1950, ISBN-10: 1406738350, ISBN-13: 978-1406738357.
- Molecular Structure and Spectroscopy by Aruldhas, G., Second Edition, 2004, ISBN: 978-81-203-3215-7, PHI Learning.

2^A. Additional information:

Г

Name of the Instructor or the Course Coordinator: Name of the Head of Quality Assurance Committee/ Department	Signature: Signature:	Date: 18 -1- 2025 Date:
Name of the Head of Department	Signature:	Date:
Name of the Head of Quality Assurance Committee/ School or Center	Signature:	Date:
Name of the Dean or the Director	Signature:	Date: